
LAIKA

Modern Scalable Flexible Extensible Enterprise-ready

LAIKA
TECHNICAL
INTRODUCTION

CL
IC

K
TO

 C
O

N
TI

N
UE

LAIKA is a multi-purpose headless/API-first digital

platform designed for enterprise. Let’s take a look

together on the technology behind this solution.

Dzmitry Dounar, solution architect of LAIKA

LAIKA
PLATFORM

LAIKA platform is a pretty big and

mature project. It’s not something

built as an accelerator that should be

finished, it’s a full-featured product

fine-tailored from scratch by team of

professionals working more than

10 years in digital asset management

and product information management

business area.

CODE
BASE

As we will discuss further, LAIKA is a

modern microservice-based platform

so it based 40+ microservices and

10+ libraries created to cover some

independent part of functionality. But

not only: platform also has a set of

reference applications for DAM, PCM,

MCM, digital publications as well as

various tools.

It’s not a lot taking into account the

functionality our platform provides. At

the same time it was built by the

team of professionals that working

with such solutions for years that’s

why we achieved such results from

the end of 2017 when we started this

project. LAIKA is a mature platform

designed for real-life usage.

127K+ 70+ 13+
Lines of code Services / applications Man/years invested

CL
IC

K
TO

 C
O

N
TI

N
UE

Our solution is based on the Microsoft .NET Core 3.1

LTS. It’s a modern open-source and cross-platform

framework that is used in all of the components of the

LAIKA. Microsoft ASP.NET Core 3.1 LTS is used for web

applications and web APIs. Microsoft made a huge step

forward in comparison with previous issues of

framework and now it’s possible to run .NET Core

applications on all major operating systems: Windows,

Linux and MacOS.

At the same time it’s not required to know .NET

framework and languages of this platform (C#, F#): all

functionality is available via REST API, so in our case

.NET is just a runtime that should be installed to run an

application.

MICROSOFT .NET CORE LTSOUR
STACK

MONGO DB
In our case Mongo is a main storage of the data that platform has. It’s document oriented database it perfectly fits

for storage or objects such as assets, products, marketing programs and others where metadata model may vary

from object to object. We also using transactions across replica sets for critical operations. And it’s perfectly

scalable and it is a good advantage for real-life usage.

ELASTICSEARCH
Elasticsearch is a modern and powerful search engine. This component used for search, filtering, faceted search

and full-text search purposes. It also used as a primary log storage while Kibana is used as a frontend for log view.

LAIKA code is based on NEST: an ORM library for Elasticsearch.

APACHE KAFKA
Kafka is a backbone of the whole platform. We’re using it as a message bus for all of the events that happens

across the platform. It’s a fast and scalable solution to synchronize changes between microservices and to avoid

direct calls between them. At the same time it is a great extension point: external modules could listen for events

in the bus and react.

REDIS
Redis is also important part of the platform. It stores user-related and session-related information as well as used

as a shared session between different instances of the services or applications. Since it’s in-memory with

persistent storage it’s a good choice to store frequently accessed data (like session-related values).

01.

02.

03.

04.

To support as many file types as possible in terms

of preview and built-in metadata LAIKA using

various media engines for different types:

graphical (ImageSharp, ImageMagick, Skia,

exiftool), document (Microsoft Office,

GhostScript), video (FFMPEG) and 3D (GLTF2).

Integrations with other engines to support more

file types is possible and available.

MEDIA
ENGINES

LAIKA using AI engines to enrich content with

additional metadata, identify objects on images or

to generate smart AI-based crops. It’s possible use

cloud services (like Google Vision or Azure

Cognitive Services) for metadata enrichment or

use built-in AI engines for smart crops, similarity

analysis, duplicate analysis and quality checks.

MEDIA PROCESSING ENGINES ARTIFICIAL INTELLIGENCE

CL
IC

K
TO

 C
O

N
TI

N
UE

P L A T F O R M
D E S I G N

Main solution design goals

were: scalability,

maintainability, extensibility

and performance during

usage of our platform as a

part of enterprise

environment with large

amount of data.

Dzmitry Dounar, solution architect

PLATFORM DESIGN

It means that platform divided to a set of independent microservices which

are responsible for a separate part of functionality, so each component

could be implemented, scaled or changed independently. Such approach is

applicable for platform extension: it’s possible to implement new

microservices to cover new functionality.

Our platform implements

microservice architecture as a

key principle of the design. Key

components represented as

layers.

LAIKA is API-first or headless. It means that all of the platform functionality is available via backend calls. It also

means that the most of the business logic is also located on backend, so to implement new UI application you just

need to call backend to execute some functionality or perform some actions. With such design UI application

simply gather and displays data (so it’s quite fast to implement a new custom UI).

API
FIRST

CL
IC

K
TO

 C
O

N
TI

N
UE

LAIKA has it’s own configuration service that stores all of the

settings that’s related to the platform execution. It’s available

via API and also has a convenient UI for administrative

purposes.

HOW TO CONFIGURE

Usually the new functionality should be implemented as a new

microservice with its own logic. For example, if you want to

combine assets to some object like publication and work with it

you’ll create a separate microservice that describes such

object.

HOW TO EXTEND

To integrate a new component to LAIKA platform you could just

call some methods from LAIKA APIs directly (that might be

useful in some cases, like store the file or create new asset) or

integrate with Apache Kafka to listen for some events.

HOW TO INTEGRATE

HOW
TO?

CL
IC

K
TO

 C
O

N
TI

N
UE

Whole backend implements HTTP REST so it could be used

from any programming language that support REST calls

(like Java, Ruby, Python, React.js, Angular.js, Javascript

etc.). So you could create your extensions and UI

applications on any programming language and framework

that you prefer. API is self-documented according to

OpenAPI 3.0 standard: all endpoints have built-in Swagger

UI with description of methods and arguments.

REST API

CL
IC

K
TO

 C
O

N
TI

N
UE

GRAPHQL

GraphQL is a modern query language for REST API implemented initially by

Facebook that allow you to define the query and response format in the

request which is ideal for the integration with LAIKA search subsystem.

LAIKA has built-in UI for query creation and testing.

GraphQL is used for the

communication with search

microservice and allow to build

search queries in simple and

efficient way.

CL
IC

K
TO

 C
O

N
TI

N
UE

INTEGRATION CAPABILITIES

Diagram on the left side of the slide demonstrate two main approaches for

the integration: direct calls via REST API (so custom applications could be

implemented using any language or technology), or by connecting

application to message bus (Apache Kafka) to use event-based integration

model.

It’s easy to integrate LAIKA into

existing ecosystem: the whole

platform designed having in

mind such cases.

LAIKA is open for integrations and extension using

any programming language or framework that

support REST calls. So it’s not important what tech

stack used by LAIKA itself, you could create new

modules or applications on any programming

language or framework (like Java, .NET, Python,

Django, Ruby, Scala, React.js, Angular.js or any

other). All of the communication goes via HTTP

REST protocol and have no language

dependencies. Even other platform components

such as databases or storages have connectors to

the most of the popular programming languages.

TECH
AGNOSTIC

It’s also easy to integrate any custom applications

into LAIKA ecosystem by implementing event-

based communication. For this purpose custom

application should be connected directly to

Apache Kafka message bus to send and receive

events. It also could be done from the most of the

modern programming languages. Kafka supports

drivers for C++, Python, Go, Erlang, .NET, Ruby,

Node.js, Java, Perl, PHP, Rust, Scala, Clojure, Swift

and many others via REST or even stdin/stdout.

So you could create your own module or

application to track all changes from LAIKA

platform and handle them in your application.

REST API COMMUNICATION EVENT-BASED MODEL

CL
IC

K
TO

 C
O

N
TI

N
UE

WEB API SECURITY
LAIKA REST API using different authentication

model for API communication that in case of end-

user authentication. Authentication could be

performed using one of the standard Web API

security protocols: Basic (using of Authorization

header for requests), JWT (token-based

authentication) and HMAC (hash-based

authentication), so it’s possible to select the most

suitable approach. At the same time all of the

requests will be registered with some Requestor ID

for logging and audit purposes.

CL
IC

K
TO

 C
O

N
TI

N
UE

LAIKA has built-in mechanisms for user

management and permissions that allow to build

extremely complex data structures (including

overrides and inheritance). At the same time it’s

possible to connect LAIKA login with any SSO

provider that implements OAuth 2.0 protocol. Each

storage also use built-in authorization and

authentication mechanisms. All user-related data

(like name or email or address) is encrypted to

meet GDPR requirements.

SECURE

R E F E R E N C E A P P L I C A T I O N S

LAIKA platform comes with a set pre-built reference applications that

provides functionality available on backend. These applications covers

wide range of activities: LAIKA (asset management), BELKA (marketing

campaign management), STRELKA (product asset management),

PUSHINKA (digital publications design).

PERSONALIZED
USER INTERFACE

C U S T O M A P P L I C A T I O N S

Since LAIKA is a headless platform you could always create a new

custom UI without big effort: the most of the business logic and features

concentrated on the backend, so UI just displays and provides the data.

Sometimes the best solution is to implement a simple lightweight UI for

some user role rather than onboard these users to a big complex

application. It could be done on any programming language or framework

(Java, .NET, React.js, Angular.js, Ruby, Django or other).

CL
IC

K
TO

 C
O

N
TI

N
UE

CL
IC

K
TO

 C
O

N
TI

N
UE

ASSETS PRODUCTS CAMPAIGNS PUBLICATIONS

LAIKA is platform agnostic and cloud agnostic. It could be hosted on Windows, Linux and

MacOS. So you could deploy LAIKA almost anywhere: on-premises, on cloud VMs or in

hybrid scenario. We minimized references to cloud services so LAIKA could be hosted in

almost any cloud: your private cloud, Amazon Web Services, Google Cloud Platform or

Microsoft Azure (as well as in other conditions). Our team tried to keep platform as

flexible as it possible but if needed it’s possible to connect platform to use more cloud

services for storages or databases etc.

Platform agnostic / Cloud agnostic
HARDWARE

CL
IC

K
TO

 C
O

N
TI

N
UE

You could simply deploy LAIKA to Windows or Linux virtual machines

together with all storages and databases, just copy the files. You could use

only 2 VMs (of AWS m5a.large shape or 2CPU and 8GB RAM together with

disk for your asset storage) and you could have LAIKA up and running. In

this case one machine will be responsible for the hosting of the application

while the other will be responsible for storages and databases. For sure, it’s

a very cheap and simple installation but still might be useful for development

environment or for usage of LAIKA for some small group of users.

VM deployment scenario

In opposite, LAIKA could be deployed as a part of Kubernetes-managed

auto-scaling cluster. It’s a preferable solution for real-life production usage

with large amount of users and large amount of data. It’s also recommended

for the situation when application will have some load from time to time so it

could be scaled appropriately. For this case we have Terraform-based IaaC

approach to create and manage cluster while LAIKA is represented as a set

of Docker containers under Kubernetes control. For sure, it’s more expensive

scenario but it’s ready for any challenge.

Auto-scaling cluster deployment scenario

You could just manually copy LAIKA applications

to some location and map IIS (under Windows) or

NGINX (or other web server under Linux) to have

LAIKA up and running. Just as simple as that.

Storages should be installed manually in this case,

but it’s a one-time operation and this process is

well-documented.

XCOPY deployment

Since it’s possible just copy LAIKA application files

to have it up and running it’s possible to automate

this process using any scripting language that is

applicable for your case. It’s also easy to integrate

LAIKA to your existing CD pipeline to automate the

process.

Automated deployment

For real-life usage we propose to use a different

approach. LAIKA team is using Terraform scripts

that fully describes and maintain infrastructure as

a code, so if any changes needed you just change

values in Terraform configuration files and then

apply these changes by executing the script again.

All the infrastructure including storages will be

maintained automatically in this case.

Infrastructure as a code

Designed for real-life usage,

so all of the maintenance

activities simplified as

much as it possible.

LOGGING

All logs platform-wide collected, stored in Elasticsearch

and available via Kibana with powerful features such as

filtering, sorting and real-time display. Each log entry has

Requestor ID and Correlation ID to identify the call chain.

MONITORING

LAIKA has built-in telemetry that provides insights not

only from machine stats but also from the application

itself, powered by Prometheus and displayed in Grafana.

BACKUPS

In case of LAIKA backup procedure in the most cases a

just file-based backup that could be done by using some

simple procedure as rsync or using some advanced

services.

KIBANA GRAFANA
Grafana displays the telemetry data

provided by LAIKA platform via

Prometheus to display it as a various

charts on the dashboards. You could

see the system performance in real-

time.

Kibana provides a convenient UI for

navigation through log entries,

searching and filtering. You could

create dashboards, charts or see the

events in real-time.

CL
IC

K
TO

 C
O

N
TI

N
UE

Number of users

Disk space consumption

Multi-regional usage

NUMBER OF ASSETS 6M+ assets

9K+ users worldwide

15TB+ of data

24 countries

This is just a sample of platform performance based

on the real-life usage experience by one of the largest

retailers in the world. Platform is scalable, so if you

need store more data it’s possible and only hardware

dependent.

PERFORMANCE

CL
IC

K
TO

 C
O

N
TI

N
UE

OUR KPIs
Uploads per hour

Publishes per hour

Searches per hour

Asset previews per hour

Downloads per hour

4 000

3 000

9 000

20 000

2 0000

The numbers above are done based on our standard

performance test for the condition similar to the previous

slide for the scenario that includes 40% of upload /

download operations and 60% of asset management

activities. Since platform is scalable it’s highly dependent

on a hardware so better results are possible if needed.

THROUGHPUT 137rps max. / 71rps avg.

CL
IC

K
TO

 C
O

N
TI

N
UE

001 Virtual taxonomies

It’s possible to define a complex taxonomy tree

that will cover all use-cases, but to display users

only small subset of such tree for better user

experience.

002 Security model

Permissions model supports inheritance via

taxonomy tree but with various override cases: like

for example priority-based overrides for

exceptional case definition.

003 Extended file format support

There is no limitations on uploading various file

types to LAIKA. For most of them like images,

videos, RAW files, documents and other preview

will be generated.

UNIQUE
FEATURES

CL
IC

K
TO

 C
O

N
TI

N
UE

004 Audit subsystem

LAIKA has built in audit subsystem that tracks all

actions performed in a system in stores it in

blockchain-based storage that guarantees that this

data will remain unchanged.

005 Asset delivery

Using CDN sync subsystem LAIKA could generate

various resolutions of assets and then supply it to

different cloud storages with CDN on top of them

to support omnichannel delivery case.

006 Bulk edit via Excel

Usually bulk edit functionality implemented as a

set of web tables, but why not to use all the

powers of Excel instead? LAIKA will create an

Excel sheet that could be downloaded and updated

but there is no need to upload it again: once you

click save all of the changes will be applied to

LAIKA directly.

CL
IC

K
TO

 C
O

N
TI

N
UE

THANK YOU
We hope that this presentation was useful and

provided answers that you looked for. If not, please

don’t hesitate to contact us.

Y O U R S L A I K A P L A T F O R M T E A M

